exercise:A4a4728515: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\indexmark}[1]{#1\markboth{#1}{#1}} \newcommand{\red}[1]{\textcolor{red}{#1}} \newcommand{\NOTE}[1]{$^{\textcolor{red}\clubsuit}$\marginpar{\setstretch{0.5}$^{\scriptscriptstyle\textcolor{red}\clubsuit}$\textcolor{blue}{\bf\tiny #1}}} \newcommand\xoverline[2][0.75]{% \sbox{\myboxA}{$\m@th#2$}% \setbox\myboxB\null% Phantom box \ht\myboxB=\ht\myboxA% \dp\myboxB=\dp\myboxA% \wd\myboxB=#1\wd\myboxA% Scale phantom...")
 
No edit summary
 
Line 1: Line 1:
<div class="d-none"><math>
<div class="d-none"><math>
\newcommand{\indexmark}[1]{#1\markboth{#1}{#1}}
\newcommand{\smallfrac}[2]{\frac{#1}{#2}}
\newcommand{\red}[1]{\textcolor{red}{#1}}
\newcommand{\medfrac}[2]{\frac{#1}{#2}}
\newcommand{\NOTE}[1]{$^{\textcolor{red}\clubsuit}$\marginpar{\setstretch{0.5}$^{\scriptscriptstyle\textcolor{red}\clubsuit}$\textcolor{blue}{\bf\tiny #1}}}
\newcommand{\textfrac}[2]{\frac{#1}{#2}}
\newcommand\xoverline[2][0.75]{%
    \sbox{\myboxA}{$\m@th#2$}%
    \setbox\myboxB\null% Phantom box
    \ht\myboxB=\ht\myboxA%
    \dp\myboxB=\dp\myboxA%
    \wd\myboxB=#1\wd\myboxA% Scale phantom
    \sbox\myboxB{$\m@th\overline{\copy\myboxB}$}%  Overlined phantom
    \setlength\mylenA{\the\wd\myboxA}%  calc width diff
    \addtolength\mylenA{-\the\wd\myboxB}%
    \ifdim\wd\myboxB<\wd\myboxA%
      \rlap{\hskip 0.35\mylenA\usebox\myboxB}{\usebox\myboxA}%
    \else
        \hskip -0.5\mylenA\rlap{\usebox\myboxA}{\hskip 0.5\mylenA\usebox\myboxB}%
    \fi}
\newcommand{\smallfrac}[2]{\scalebox{1.35}{\ensuremath{\frac{#1}{#2}}}}
\newcommand{\medfrac}[2]{\scalebox{1.2}{\ensuremath{\frac{#1}{#2}}}}
\newcommand{\textfrac}[2]{{\textstyle\ensuremath{\frac{#1}{#2}}}}
\newcommand{\nsum}[1][1.4]{% only for \displaystyle
    \mathop{%
        \raisebox
            {-#1\depthofsumsign+1\depthofsumsign}
\newcommand{\tr}{\operatorname{tr}}
\newcommand{\tr}{\operatorname{tr}}
\newcommand{\e}{\operatorname{e}}
\newcommand{\e}{\operatorname{e}}
\newcommand{\B}{\operatorname{B}}
\newcommand{\B}{\operatorname{B}}
\newcommand{\Bbar}{\xoverline[0.75]{\operatorname{B}}}
\newcommand{\Bbar}{\overline{\operatorname{B}}}
\newcommand{\pr}{\operatorname{pr}}
\newcommand{\pr}{\operatorname{pr}}
\newcommand{\dd}{\operatorname{d}\hspace{-1pt}}
\newcommand{\dd}{\operatorname{d}\hspace{-1pt}}
Line 33: Line 12:
\newcommand{\V}{\operatorname{V}}
\newcommand{\V}{\operatorname{V}}
\newcommand{\Cov}{\operatorname{Cov}}
\newcommand{\Cov}{\operatorname{Cov}}
\newcommand{\Bigsum}[2]{\ensuremath{\mathop{\textstyle\sum}_{#1}^{#2}}}
\newcommand{\Bigsum}[2]{\mathop{\textstyle\sum}_{#1}^{#2}}
\newcommand{\ran}{\operatorname{ran}}
\newcommand{\ran}{\operatorname{ran}}
\newcommand{\card}{\#}
\newcommand{\card}{\#}
\newcommand{\Conv}{\mathop{\scalebox{1.1}{\raisebox{-0.08ex}{$\ast$}}}}%
\newcommand{\mathds}{\mathbb}
\renewcommand{\P}{\operatorname{P}}
\renewcommand{\L}{\operatorname{L}}
</math></div>


\usepackage{pgfplots}
Let <math>X_i\sim\mathcal{N}(0,1)</math> and <math>X=X_1+\dots+X_d</math>.  
\newcommand{\filledsquare}{\begin{picture}(0,0)(0,0)\put(-4,1.4){$\scriptscriptstyle\text{\ding{110}}$}\end{picture}\hspace{2pt}}
\newcommand{\mathds}{\mathbb}</math></div>
\label{NaiveTailBound} Let <math>X_i\sim\mathcal{N}(0,1)</math> and <math>X=X_1+\dots+X_d</math>.  
<ul style="list-style-type:lower-roman"><li> Use the formula <math>\E(f(X_i))=(2\pi)^{-1/2}\int_{\mathbb{R}}f(x)\exp(-x^2/2)\dd x</math> to show that <math>\E(\exp(tX_i))=(1-2t)^{-d/2}</math> holds for <math>t\in(0,1/2)</math>.
<ul style="list-style-type:lower-roman"><li> Use the formula <math>\E(f(X_i))=(2\pi)^{-1/2}\int_{\mathbb{R}}f(x)\exp(-x^2/2)\dd x</math> to show that <math>\E(\exp(tX_i))=(1-2t)^{-d/2}</math> holds for <math>t\in(0,1/2)</math>.
</li>
</li>

Latest revision as of 03:46, 2 June 2024

[math] \newcommand{\smallfrac}[2]{\frac{#1}{#2}} \newcommand{\medfrac}[2]{\frac{#1}{#2}} \newcommand{\textfrac}[2]{\frac{#1}{#2}} \newcommand{\tr}{\operatorname{tr}} \newcommand{\e}{\operatorname{e}} \newcommand{\B}{\operatorname{B}} \newcommand{\Bbar}{\overline{\operatorname{B}}} \newcommand{\pr}{\operatorname{pr}} \newcommand{\dd}{\operatorname{d}\hspace{-1pt}} \newcommand{\E}{\operatorname{E}} \newcommand{\V}{\operatorname{V}} \newcommand{\Cov}{\operatorname{Cov}} \newcommand{\Bigsum}[2]{\mathop{\textstyle\sum}_{#1}^{#2}} \newcommand{\ran}{\operatorname{ran}} \newcommand{\card}{\#} \newcommand{\mathds}{\mathbb} \renewcommand{\P}{\operatorname{P}} \renewcommand{\L}{\operatorname{L}} [/math]

Let [math]X_i\sim\mathcal{N}(0,1)[/math] and [math]X=X_1+\dots+X_d[/math].

  • Use the formula [math]\E(f(X_i))=(2\pi)^{-1/2}\int_{\mathbb{R}}f(x)\exp(-x^2/2)\dd x[/math] to show that [math]\E(\exp(tX_i))=(1-2t)^{-d/2}[/math] holds for [math]t\in(0,1/2)[/math].
  • Derive the estimate [math]\P\bigl[X\geqslant a\bigr] \leqslant\inf_{t\in(0,1/2)}\frac{\exp(-ta)}{(1-2t)^{d/2}}[/math] for [math]a \gt 0[/math].