exercise:F3b8de006a: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Choose independently two numbers <math>B</math> and <math>C</math> ''at random'' from the interval <math>[-1,1]</math> with uniform distribution, and consider the quadratic equation <math display="block"> x^2 + Bx + C = 0\ . </math> Find the prob...")
 
No edit summary
 
Line 1: Line 1:
<div class="d-none"><math>
Choose independently two numbers <math>B</math> and <math>C</math> ''at random'' from the interval <math>[-1,1]</math> with uniform distribution, and consider the quadratic equation
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}</math></div> Choose independently two numbers <math>B</math> and <math>C</math> ''at random'' from the
interval <math>[-1,1]</math> with uniform distribution, and consider the quadratic
equation


<math display="block">
<math display="block">
Line 13: Line 5:
</math>
</math>
Find the probability that the roots of this equation
Find the probability that the roots of this equation
<ul><li> are both real.
<ul style="list-style-type:lower-alpha"><li> are both real.
</li>
</li>
<li> are both positive.
<li> are both positive.
</li>
</li>
</ul>
</ul>
''Hints'': (a) requires <math>0 \leq B^2 - 4C</math>,
''Hints'': (a) requires <math>0 \leq B^2 - 4C</math>,
(b) requires <math>0 \leq B^2 - 4C</math>, <math>B \leq 0</math>, <math>0 \leq C</math>.
(b) requires <math>0 \leq B^2 - 4C</math>, <math>B \leq 0</math>, <math>0 \leq C</math>.

Latest revision as of 22:25, 12 June 2024

Choose independently two numbers [math]B[/math] and [math]C[/math] at random from the interval [math][-1,1][/math] with uniform distribution, and consider the quadratic equation

[[math]] x^2 + Bx + C = 0\ . [[/math]]

Find the probability that the roots of this equation

  • are both real.
  • are both positive.

Hints: (a) requires [math]0 \leq B^2 - 4C[/math], (b) requires [math]0 \leq B^2 - 4C[/math], [math]B \leq 0[/math], [math]0 \leq C[/math].