exercise:968e1d0ecf: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> (Johnsonbough<ref group="Notes" >R. Johnsonbough, “Problem \#103,” ''Two Year College Math Journal,'' vol. 8 (1977), p. 292.</ref>) A coin with probability <math>p</math> for heads is tossed <math>n</math> times. Let <math>E</math> be the ev...")
 
No edit summary
 
Line 1: Line 1:
<div class="d-none"><math>
(Johnsonbough<ref group="Notes" >R. Johnsonbough, “Problem #103,” ''Two Year College Math Journal,'' vol. 8 (1977), p. 292.</ref>)  A coin with probability <math>p</math> for heads is tossed <math>n</math> times.  Let <math>E</math> be the event “a head is obtained on the
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}</math></div> (Johnsonbough<ref group="Notes" >R. Johnsonbough, “Problem
\#103,” ''Two Year College Math Journal,'' vol. 8 (1977), p. 292.</ref>)  A coin with probability
<math>p</math> for heads is tossed <math>n</math> times.  Let <math>E</math> be the event “a head is obtained on the
first toss' and <math>F_k</math> the event `exactly <math>k</math> heads are obtained.”  For which
first toss' and <math>F_k</math> the event `exactly <math>k</math> heads are obtained.”  For which
pairs <math>(n,k)</math> are <math>E</math> and <math>F_k</math> independent?
pairs <math>(n,k)</math> are <math>E</math> and <math>F_k</math> independent?

Latest revision as of 23:47, 12 June 2024

(Johnsonbough[Notes 1]) A coin with probability [math]p[/math] for heads is tossed [math]n[/math] times. Let [math]E[/math] be the event “a head is obtained on the first toss' and [math]F_k[/math] the event `exactly [math]k[/math] heads are obtained.” For which pairs [math](n,k)[/math] are [math]E[/math] and [math]F_k[/math] independent?

Notes

  1. R. Johnsonbough, “Problem #103,” Two Year College Math Journal, vol. 8 (1977), p. 292.