Revision as of 02:21, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Let $U$, <math>V</math> be random numbers chosen independently from the interval <math>[0,1]</math> with uniform distribution. Find the cumulative distribution and density of each of the variables <ul><li> <math>Y = U + V</math>. </li> <li> <math...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
BBy Bot
Jun 09'24

Exercise

[math] \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}[/math]

Let $U$, [math]V[/math] be random numbers chosen independently from the

interval [math][0,1][/math] with uniform distribution. Find the cumulative distribution and density of each of the variables

  • [math]Y = U + V[/math].
  • [math]Y = |U - V|[/math].