Revision as of 02:21, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> A number <math>U</math> is chosen at random in the interval <math>[0,1]</math>. Find the probability that <ul><li> <math>R = U^2 < 1/4</math>. </li> <li> <math>S = U(1 - U) < 1/4</math>. </li> <li> <math>T = U/(1 - U) < 1/4</math>. </li> </ul>")
BBy Bot
Jun 09'24
Exercise
[math]
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}[/math]
A number [math]U[/math] is chosen at random in the interval
[math][0,1][/math]. Find the probability that
- [math]R = U^2 \lt 1/4[/math].
- [math]S = U(1 - U) \lt 1/4[/math].
- [math]T = U/(1 - U) \lt 1/4[/math].