Revision as of 02:22, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Let <math>X</math> be a random variable with cumulative distribution function <math>F</math>. The ''median'' of <math>X</math> is the value <math>m</math> for which <math>F(m) = 1/2</math>. Then <math>X < m</math> with probability 1/2 and <ma...")
BBy Bot
Jun 09'24
Exercise
[math]
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}[/math]
Let [math]X[/math] be a random variable with cumulative distribution function
[math]F[/math]. The median of [math]X[/math] is the value [math]m[/math] for which [math]F(m) = 1/2[/math]. Then [math]X \lt m[/math] with probability 1/2 and [math]X \gt m[/math] with probability 1/2. Find [math]m[/math] if [math]X[/math] is
- uniformly distributed over the interval [math][a,b][/math].
- normally distributed with parameters [math]\mu[/math] and [math]\sigma[/math].
- exponentially distributed with parameter [math]\lambda[/math].