Revision as of 02:25, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Let <math>X</math> be a continuous random variable with density function <math>f_X(x)</math>. Show that if <math display="block"> \int_{-\infty}^{+\infty} x^2 f_X(x)\, dx < \infty\ , </math> then <math display="block"> \int_{-\infty}^{+\infty...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
BBy Bot
Jun 09'24

Exercise

[math] \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}[/math]

Let [math]X[/math] be a continuous random variable with density

function [math]f_X(x)[/math]. Show that if

[[math]] \int_{-\infty}^{+\infty} x^2 f_X(x)\, dx \lt \infty\ , [[/math]]

then

[[math]] \int_{-\infty}^{+\infty} |x| f_X(x)\, dx \lt \infty\ . [[/math]]

Hint: Except on the interval [math][-1, 1][/math], the first integrand is greater than the second integrand.