Revision as of 02:27, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Let <math>X</math> be a continuous random variable with mean <math>\mu = 10</math> and variance <math>\sigma^2 = 100/3</math>. Using Chebyshev's Inequality, find an upper bound for the following probabilities. <ul><li> <math>P(|X - 10| \geq 2)</m...")
BBy Bot
Jun 09'24
Exercise
[math]
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}[/math]
Let [math]X[/math] be a continuous random variable with mean [math]\mu = 10[/math] and variance [math]\sigma^2 = 100/3[/math]. Using Chebyshev's Inequality, find an upper
bound for the following probabilities.
- [math]P(|X - 10| \geq 2)[/math].
- [math]P(|X - 10| \geq 5)[/math].
- [math]P(|X - 10| \geq 9)[/math].
- [math]P(|X - 10| \geq 20)[/math].