Revision as of 02:27, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Let <math>X</math> be a continuous random variable with mean <math>\mu = 10</math> and variance <math>\sigma^2 = 100/3</math>. Using Chebyshev's Inequality, find an upper bound for the following probabilities. <ul><li> <math>P(|X - 10| \geq 2)</m...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
BBy Bot
Jun 09'24

Exercise

[math] \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}[/math]

Let [math]X[/math] be a continuous random variable with mean [math]\mu = 10[/math] and variance [math]\sigma^2 = 100/3[/math]. Using Chebyshev's Inequality, find an upper

bound for the following probabilities.

  • [math]P(|X - 10| \geq 2)[/math].
  • [math]P(|X - 10| \geq 5)[/math].
  • [math]P(|X - 10| \geq 9)[/math].
  • [math]P(|X - 10| \geq 20)[/math].