Revision as of 02:21, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Let <math>X</math> be a random variable with cumulative distribution function </math> F(x) = \left \{ \begin{array}{ll} 0, & \mbox{if <math>x < 0</math>}, \\ \sin^2(\pi x/2), & \mbox{if <math>0 \leq x \le...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
BBy Bot
Jun 09'24

Exercise

[math] \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}[/math]

Let [math]X[/math] be a random variable with cumulative distribution function

</math> F(x) = \left \{ \begin{array}{ll}

                          0, & \mbox{if [math]x  \lt  0[/math]}, \\
            \sin^2(\pi x/2), & \mbox{if [math]0 \leq x \leq 1[/math]},  \\
                          1, & \mbox{if [math]1  \lt  x[/math]}.
               \end{array}
      \right.

[[math]] \ltul\gt\ltli\gt What is the density function $f_X$ for \ltmath\gtX[[/math]]

?

  • What is the probability that [math]X \lt 1/4[/math]?