Revision as of 22:25, 24 June 2023 by Admin (Created page with "<div class="d-none"> <math> \require{textmacros} \def \bbeta {\bf \beta} \def\fat#1{\mbox{\boldmath$#1$}} \def\reminder#1{\marginpar{\rule[0pt]{1mm}{11pt}}\textbf{#1}} \def\SS...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
ABy Admin
Jun 24'23

Exercise

[math] \require{textmacros} \def \bbeta {\bf \beta} \def\fat#1{\mbox{\boldmath$#1$}} \def\reminder#1{\marginpar{\rule[0pt]{1mm}{11pt}}\textbf{#1}} \def\SSigma{\bf \Sigma} \def\ttheta{\bf \theta} \def\aalpha{\bf \alpha} \def\ddelta{\bf \delta} \def\eeta{\bf \eta} \def\llambda{\bf \lambda} \def\ggamma{\bf \gamma} \def\nnu{\bf \nu} \def\vvarepsilon{\bf \varepsilon} \def\mmu{\bf \mu} \def\nnu{\bf \nu} \def\ttau{\bf \tau} \def\SSigma{\bf \Sigma} \def\TTheta{\bf \Theta} \def\XXi{\bf \Xi} \def\PPi{\bf \Pi} \def\GGamma{\bf \Gamma} \def\DDelta{\bf \Delta} \def\ssigma{\bf \sigma} \def\UUpsilon{\bf \Upsilon} \def\PPsi{\bf \Psi} \def\PPhi{\bf \Phi} \def\LLambda{\bf \Lambda} \def\OOmega{\bf \Omega} [/math]

This exercise is inspired by one from [1]. Consider the simple linear regression model [math]Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i[/math] with [math]\varepsilon_i \sim \mathcal{N}(0, \sigma^2)[/math]. The data on the covariate and response are: [math]\mathbf{X}^{\top} = (X_1, X_2, \ldots, X_{8})^{\top} = (-2, -1, -1, -1, 0, 1, 2, 2)^{\top}[/math] and [math]\mathbf{Y}^{\top} = (Y_1, Y_2, \ldots, Y_{8})^{\top} = (35, 40, 36, 38, 40, 43, 45, 43)^{\top}[/math], with corresponding elements in the same order.

  • Find the ridge regression estimator for the data above for a general value of [math]\lambda[/math].
  • Evaluate the fit, i.e. [math]\widehat{Y}_i(\lambda)[/math] for [math]\lambda=10[/math]. Would you judge the fit as good? If not, what is the most striking feature that you find unsatisfactory?
  • Now zero center the covariate and response data, denote it by [math]\tilde{X}_i[/math] and [math]\tilde{Y}_i[/math], and evaluate the ridge estimator of [math]\tilde{Y}_i = \beta_1 \tilde{X}_i + \varepsilon_i[/math] at [math]\lambda=4[/math]. Verify that in terms of original data the resulting predictor now is: [math]\widehat{Y}_i(\lambda) = 40 + 1.75 X[/math].

Note that the employed estimate in the predictor found in part c) is effectively a combination of a maximum likelihood and ridge regression one for intercept and slope, respectively. Put differently, only the slope has been regularized/penalized.

  1. Draper, N. R. and Smith, H. (1998).Applied Regression Analysis (3rd edition).John Wiley & Sons