Revision as of 19:18, 15 January 2024 by Admin (Created page with "You are given the survival function: <math display = "block">S_{0}(x)=\left(1-\frac{x}{60}\right)^{\frac{1}{3}}, \quad 0 \leq x \leq 60</math>. Calculate <math>1000 \mu_{35}</math>. <ul class="mw-excansopts"><li> 5.6</li><li> 6.7</li><li> 13.3</li><li> 16.7</li><li> 20.1</li></ul>")
Jan 15'24
Exercise
You are given the survival function:
[[math]]S_{0}(x)=\left(1-\frac{x}{60}\right)^{\frac{1}{3}}, \quad 0 \leq x \leq 60[[/math]]
.
Calculate [math]1000 \mu_{35}[/math].
- 5.6
- 6.7
- 13.3
- 16.7
- 20.1
Jan 15'24
Answer: C
[[math]]
\begin{aligned}
\mu_{x} & =-\frac{d}{d_{x}} \ln S_{0}(x)=-\frac{1}{3} \frac{d}{d_{x}} \ln \left(1-\frac{x}{60}\right) \\
& =\frac{1}{180}\left(1-\frac{x}{60}\right)^{-1}=\frac{1}{3(60-x)}
\end{aligned}
[[/math]]
Therefore, [math]1000 \mu_{35}=(1000) \frac{1}{3(25)}=\frac{1000}{75}=13.3[/math].