Revision as of 17:01, 15 January 2024 by Admin (Created page with "You are given: (i) <math>\quad S_{0}(t)=\left(1-\frac{t}{\omega}\right)^{\frac{1}{4}}</math>, for <math>0 \leq t \leq \omega</math> (ii) <math>\quad \mu_{65}=\frac{1}{180}</math> Calculate <math>e_{106}</math>, the curtate expectation of life at age 106 . <ul class="mw-excansopts"><li> 2.2</li><li> 2.5</li><li> 2.7</li><li> 3.0</li><li> 3.2</li></ul>")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jan 15'24

Exercise

You are given:

(i) [math]\quad S_{0}(t)=\left(1-\frac{t}{\omega}\right)^{\frac{1}{4}}[/math], for [math]0 \leq t \leq \omega[/math]

(ii) [math]\quad \mu_{65}=\frac{1}{180}[/math]

Calculate [math]e_{106}[/math], the curtate expectation of life at age 106 .

  • 2.2
  • 2.5
  • 2.7
  • 3.0
  • 3.2
Jan 15'24

Answer: B

Since [math]S_{0}(t)=1-F_{0}(t)=\left(1-\frac{t}{\omega}\right)^{\frac{1}{4}}[/math], we have [math]\ln \left[S_{0}(t)\right]=\frac{1}{4} \ln \left[\frac{\omega-t}{\omega}\right][/math].

Then [math]\mu_{t}=-\frac{d}{d t} \log S_{0}(t)=\frac{1}{4} \frac{1}{\omega-t}[/math], and [math]\mu_{65}=\frac{1}{180}=\frac{1}{4} \frac{1}{\omega-65} \Rightarrow \omega=110[/math].

[math]e_{106}=\sum_{t=1}^{3}{ }_{t} p_{106}[/math], since [math]{ }_{4} p_{106}=0[/math]

[math]{ }_{t} p_{106}=\frac{S_{0}(106+t)}{S_{0}(106)}=\frac{\left(1-\frac{106+t}{110}\right)^{1 / 4}}{\left(1-\frac{106}{110}\right)^{1 / 4}}=\left(\frac{4-t}{4}\right)^{1 / 4}[/math]

[math]e_{106}=\sum_{i=1}^{i=4}{ }_{t} p_{106}=\frac{1}{4^{0.25}}\left(1^{0.25}+2^{0.25}+3^{0.25}\right)=2.4786[/math]

Copyright 2024 . The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00