Revision as of 18:36, 15 January 2024 by Admin (Created page with "You are given: i)<math> q_{80}=0.04</math> ii)<math> q_{81}=0.06</math> iii)<math>q_{82}=0.08</math> iv) Deaths between ages 80 and 81 are uniformly distributed v) Deaths between ages 81 and 82 are subject to a constant force of mortality Calculate the probability that a person aged 80.6 will die between ages 81.1 and 81.6. <ul class="mw-excansopts"><li> 0.0294</li><li> 0.0296</li><li> 0.0298</li><li> 0.0300</li><li> 0.0302</li></ul>")
ABy Admin
Jan 15'24
Exercise
You are given:
i)[math] q_{80}=0.04[/math]
ii)[math] q_{81}=0.06[/math]
iii)[math]q_{82}=0.08[/math]
iv) Deaths between ages 80 and 81 are uniformly distributed
v) Deaths between ages 81 and 82 are subject to a constant force of mortality
Calculate the probability that a person aged 80.6 will die between ages 81.1 and 81.6.
- 0.0294
- 0.0296
- 0.0298
- 0.0300
- 0.0302
ABy Admin
Jan 15'24
Answer: C
Let [math]l_{80}=1000 \Rightarrow l_{81}=960 \Rightarrow l_{82}=902.4[/math]
[[math]]\textrm{Answer} \, =\frac{l_{81.1}-l_{81.6}}{l_{80.6}}=\frac{(960)^{0.9}(902.4)^{0.1}-(960)^{0.4}(902.4)^{0.6}}{(0.4)(1000)+(0.6)(960)}=0.02978[[/math]]
The value for [math]l_{80}[/math] is arbitrary. Any other starting value gives the same result.
Another form for the survivors between 81 and 82 would be
[math]\mu=-\ln (902 / 960)=0.0095833[/math];
[math]l_{81.1}=960 \times e^{-0.1 \times 0.0095833}=959.08 ;[/math]
[math]l_{81.6}=960 \times e^{-0.6 \times 0.0095833}=954.496[/math].