Exercise
Scientists are searching for a vaccine for a disease. You are given:
(i) 100,000 lives age [math]x[/math] are exposed to the disease
(ii) Future lifetimes are independent, except that the vaccine, if available, will be given to all at the end of year 1
(iii) The probability that the vaccine will be available is 0.2
(iv) For each life during year [math]1, q_{x}=0.02[/math]
(v) For each life during year 2, [math]q_{x+1}=0.01[/math] if the vaccine has been given, and [math]q_{x+1}=0.02[/math] if it has not been given
Calculate the standard deviation of the number of survivors at the end of year 2.
- 100
- 200
- 300
- 400
- 500
Answer: D
This is a mixed distribution for the population, since the vaccine will apply to all once available.
Available?
[math](A)[/math] | [math]\operatorname{Pr}(A)[/math] | [math]{ }_{2} p \mid A[/math] | [math]E(S \mid A)[/math] | [math]\operatorname{Var}(S \mid A)[/math] | [math]E\left(S^{2} \mid A\right)[/math] |
---|---|---|---|---|---|
Yes | 0.2 | 0.9702 | 97,020 | 2,891 | [math]9,412,883,291[/math] |
No | 0.8 | 0.9604 | 96,040 | 3,803 | [math]9,223,685,403[/math] |
[math]E(S)[/math] | [math]E\left(S^{2}\right)[/math] | ||||
96,236 | [math]9,261,524,981[/math] | ||||
[math]\operatorname{Var}(S)[/math] | 157,285 | ||||
[math]S D(S)[/math] | 397 |
As an example, the formulas for the "No" row are
[math]\operatorname{Pr}(\mathrm{No})=1-0.2=0.8[/math]
[math]{ }_{2} p[/math] given [math]\mathrm{No}=(0.98[/math] during year 1[math])(0.98[/math] during year 2[math])=0.9604[/math]
[math]E(S \mid \mathrm{No}), \operatorname{Var}(S \mid[/math] No [math])[/math] and [math]E\left(S^{2} \mid\right.[/math] No [math])[/math] are just binomial, [math]n=100,000 ; \mathrm{p}([/math] success [math])=0.9604[/math]
[math]E(S), E\left(S^{2}\right)[/math] are weighted averages,
[math]\operatorname{Var}(S)=E\left(S^{2}\right)-E(S)^{2}[/math]
Or, by the conditional variance formula: