Revision as of 00:25, 18 January 2024 by Admin
ABy Admin
Jan 15'24

Exercise

You are given that mortality follows Gompertz Law with [math]B=0.00027[/math] and [math]c=1.1[/math]. Calculate [math]f_{50}(10)[/math].

  • 0.048
  • 0.050
  • 0.052
  • 0.054
  • 0.056

Copyright 2024 . The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

ABy Admin
Jan 15'24

Answer: A

[math]f_{x}(t)=-\frac{d}{d t} S_{x}(t)=-\frac{d}{d t}\left(e^{-\frac{B}{\ln c}\left(c^{x}\right)\left(c^{t}-1\right)}\right)[/math]

[math]=-e^{-\frac{B}{\ln c}\left(c^{x}\right)\left(c^{t}-1\right)} \cdot\left(-\frac{B}{\ln c} \cdot c^{x}\right) \cdot c^{t} \cdot \ln c[/math]

[math]=e^{-\frac{B}{\ln c}\left(c^{x}\right)\left(c^{t}-1\right)} \cdot B c^{x+t}[/math]

[math]=0.00027 \times 1.1^{x+t} \cdot e^{-\frac{0.00027}{\ln (1.1)}\left(1.1^{x}\right)\left(1.1^{t}-1\right)}[/math]

[math]f_{50}(10)=0.00027 \times 1.1^{50+10} \cdot e^{-\frac{0.00027}{\ln (1.1)}\left(1.1^{50}\right)\left(1.1^{10}-1\right)}=0.04839[/math]

Alternative Solution:

[math]f_{x}(t)={ }_{t} p_{x} \cdot \mu_{x+t}[/math]

Then we can use the formulas given for Makeham with [math]A=0, B=0.00027[/math] and [math]c=1.1[/math]

[math]f_{x}(t)=\left(e^{-\frac{0.00027}{\ln (1.1)}\left(1.1^{50}\right)\left(1.1^{10}-1\right)}\right)\left(0.00027 \times 1.1^{50+10}\right)=0.04839[/math]

Copyright 2024 . The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00