Revision as of 00:27, 16 January 2024 by Admin (Created page with "For a mortality table with a select period of two years, you are given: {| class="table" ! <math>x</math> !! <math>q_{[x]}</math> !! <math>q_{[x]+1}</math> !! <math>q_{x+2}</math> !! <math>x+2</math> |- | 50 || 0.0050 || 0.0063 || 0.0080 || 52 |- | 51 || 0.0060 || 0.0073 || 0.0090 || 53 |- | 52 || 0.0070 || 0.0083 || 0.0100 || 54 |- | 53 || 0.0080 || 0.0093 || 0.0110 || 55 |} The force of mortality is constant between integral ages. Calculate <math>1000_{2.5} q_{[50]...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jan 16'24

Exercise

For a mortality table with a select period of two years, you are given:

[math]x[/math] [math]q_{[x]}[/math] [math]q_{[x]+1}[/math] [math]q_{x+2}[/math] [math]x+2[/math]
50 0.0050 0.0063 0.0080 52
51 0.0060 0.0073 0.0090 53
52 0.0070 0.0083 0.0100 54
53 0.0080 0.0093 0.0110 55


The force of mortality is constant between integral ages.

Calculate [math]1000_{2.5} q_{[50]+0.4}[/math].

  • 15.2
  • 16.4
  • 17.7
  • 19.0
  • 20.2
Jan 16'24

Answer: B

[[math]] \begin{aligned} { }_{2.5} q_{[50]+0.4} & =1-{ }_{2.5} p_{[50]+0.4}=1-{ }_{2.9} p_{[50]} /\left(p_{[50]}\right)^{0.4} \\ & =1-\left\{p_{[50]} p_{[50]+1}\left(p_{52}\right)^{0.9}\right\} /\left(1-q_{[50]}\right)^{0.4} \\ & =1-\left\{\left(1-q_{[50]}\right)\left(1-q_{[50]+1}\right)\left(1-q_{52}\right)^{0.9}\right\} /\left(1-q_{[50]}\right)^{0.4} \\ & =1-\left\{(1-0.0050)(1-0.0063)(1-0.0080)^{0.9}\right\} /(1-0.0050)^{0.4} \\ & =0.01642 \end{aligned} [[/math]]


[math]1000_{2.5} q_{[50]+0.4}=16.42[/math]

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00