Revision as of 02:28, 16 January 2024 by Admin (Created page with "'''Answer: C''' We need to determine <math>{ }_{3 \mid 2.5} q_{90}</math>. <math display="block"> { }_{3 \mid 2.5} q_{90}=\frac{l_{90+3}-l_{90+3+2.5}}{l_{90}}=\frac{l_{93}-l_{95.5}}{l_{90}}=\frac{l_{93}-\left(l_{95}-0.5 d_{95}\right)}{l_{90}}=\frac{825-[600-0.5(240)]}{1,000}=0.3450 </math> where <math>l_{90}=1,000, l_{93}=825, l_{97}=\frac{d_{97}}{q_{97}}=\frac{72}{1}=72, l_{96}=\frac{l_{97}}{p_{96}}=\frac{72}{0.2}=360</math>, <math>l_{95}=\frac{l_{96}}{p_{95}}=\f...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


Jan 16'24

Answer

Answer: C

We need to determine [math]{ }_{3 \mid 2.5} q_{90}[/math].

[[math]] { }_{3 \mid 2.5} q_{90}=\frac{l_{90+3}-l_{90+3+2.5}}{l_{90}}=\frac{l_{93}-l_{95.5}}{l_{90}}=\frac{l_{93}-\left(l_{95}-0.5 d_{95}\right)}{l_{90}}=\frac{825-[600-0.5(240)]}{1,000}=0.3450 [[/math]]


where [math]l_{90}=1,000, l_{93}=825, l_{97}=\frac{d_{97}}{q_{97}}=\frac{72}{1}=72, l_{96}=\frac{l_{97}}{p_{96}}=\frac{72}{0.2}=360[/math],

[math]l_{95}=\frac{l_{96}}{p_{95}}=\frac{360}{1-0.4}=600[/math], and [math]d_{95}=l_{95}-l_{96}=600-360=240[/math].

00