Revision as of 23:49, 1 June 2022 by Admin (Created page with "The loss in year 1, <math>X</math>, has probability density function <math display = "block"> f(x) = \begin{cases} \frac{\alpha \theta^{\alpha}}{(x+\theta)^{\alpha +1}}, x...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jun 02'22

Exercise

The loss in year 1, [math]X[/math], has probability density function

[[math]] f(x) = \begin{cases} \frac{\alpha \theta^{\alpha}}{(x+\theta)^{\alpha +1}}, x \geq 0 \\ 0, x \lt 0 \end{cases} [[/math]]

A deductible equalling the loss in year 1 is applicable in year 2. If the loss in year 2, with deductible in effect, equals [math]Y[/math], determine the joint density function for [math]X,Y[/math].

  1. [[math]] \begin{align*} f_{X,Y}(x,y) &= \begin{cases} \frac{\alpha^2\theta^{\alpha}}{(x+\theta)(y + x + \theta)^{\alpha + 1}}, y \gt 0, x \gt 0 \\ 0, \, \textrm{Otherwise} \end{cases} \\ \end{align*} [[/math]]
  2. [[math]] \begin{align*} f_{X,Y}(x,y) &= \begin{cases} \frac{\alpha^2}{(x+\theta)(y + x + \theta)^{\alpha + 1}}, y \gt 0, x \gt 0 \\ 0, \, \textrm{Otherwise} \end{cases} \\ \end{align*} [[/math]]
  3. [[math]] \begin{align*} f_{X,Y}(x,y) &= \begin{cases} \frac{\alpha^2\theta^{\alpha}}{(y + x + \theta)^{\alpha + 1}}, y \gt 0, x \gt 0 \\ 0, \, \textrm{Otherwise} \end{cases} \\ \end{align*} [[/math]]
  4. [[math]] \begin{align*} f_{X,Y}(x,y) &= \begin{cases} \frac{\alpha^2\theta^{\alpha}}{(x+\theta)(y + x + \theta)^{\alpha}}, y \gt 0, x \gt 0 \\ 0, \, \textrm{Otherwise} \end{cases} \\ \end{align*} [[/math]]
  5. [[math]] \begin{align*} f_{X,Y}(x,y) &= \begin{cases} \frac{\alpha\theta^{\alpha}}{(x+\theta)(y + x + \theta)^{\alpha + 1}}, y \gt 0, x \gt 0 \\ 0, \, \textrm{Otherwise} \end{cases} \\ \end{align*} [[/math]]
Jun 02'22

Only guide subscribers can view this answer

Subscribe