Revision as of 02:17, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> \begin{sloppypar} Given that <math>P(X = a) = r</math>, <math>P(\max(X,Y) = a) = s</math>, and <math>P(\min(X,Y) = a) = t</math>, show that you can determine <math>u = P(Y = a)</math> in terms of <math>r</math>, <math>s</math>, and <math>t</math...")
BBy Bot
Jun 09'24
Exercise
[math]
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}[/math]
\begin{sloppypar} Given that [math]P(X = a) = r[/math], [math]P(\max(X,Y) = a) = s[/math],
and [math]P(\min(X,Y) = a) = t[/math], show that you can determine [math]u = P(Y = a)[/math] in terms of [math]r[/math], [math]s[/math], and [math]t[/math].\end{sloppypar}