Revision as of 02:18, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Let <math>R_i</math> be the event that the <math>i</math>th player in a poker game has a royal flush. Show that a royal flush (A,K,Q,J,10 of one suit) attracts another royal flush, that is <math>P(R_2|R_1) > P(R_2)</math>. Show that a royal f...")
BBy Bot
Jun 09'24
Exercise
[math]
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}[/math]
Let [math]R_i[/math] be the event that the [math]i[/math]th player in a poker game has a
royal flush. Show that a royal flush (A,K,Q,J,10 of one suit) attracts another royal flush, that is [math]P(R_2|R_1) \gt P(R_2)[/math]. Show that a royal flush repels full houses.