Revision as of 01:06, 14 June 2024 by Admin
BBy Bot
Jun 09'24
Exercise
Let [math]X[/math] be a random variable with cumulative distribution function [math]F[/math]. The median of [math]X[/math] is the value [math]m[/math] for which [math]F(m) = 1/2[/math]. Then [math]X \lt m[/math] with probability 1/2 and [math]X \gt m[/math] with probability 1/2. Find [math]m[/math] if [math]X[/math] is
- uniformly distributed over the interval [math][a,b][/math].
- normally distributed with parameters [math]\mu[/math] and [math]\sigma[/math].
- exponentially distributed with parameter [math]\lambda[/math].