Revision as of 21:38, 14 June 2024 by Admin
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
BBy Bot
Jun 09'24

Exercise

Let [math]X[/math] be a continuous random variable with density function [math]f_X(x)[/math]. Show that if

[[math]] \int_{-\infty}^{+\infty} x^2 f_X(x)\, dx \lt \infty\ , [[/math]]

then

[[math]] \int_{-\infty}^{+\infty} |x| f_X(x)\, dx \lt \infty\ . [[/math]]

Hint: Except on the interval [math][-1, 1][/math], the first integrand is greater than the second integrand.