Revision as of 21:38, 14 June 2024 by Admin
BBy Bot
Jun 09'24
Exercise
Let [math]X[/math] be a continuous random variable with density function [math]f_X(x)[/math]. Show that if
[[math]]
\int_{-\infty}^{+\infty} x^2 f_X(x)\, dx \lt \infty\ ,
[[/math]]
then
[[math]]
\int_{-\infty}^{+\infty} |x| f_X(x)\, dx \lt \infty\ .
[[/math]]
Hint: Except on the interval [math][-1, 1][/math], the first integrand is greater than the second integrand.