Revision as of 21:44, 14 June 2024 by Admin
BBy Bot
Jun 09'24
Exercise
Let [math]X[/math] and [math]Y[/math] be random variables with positive variance. The correlation of [math]X[/math] and [math]Y[/math] is defined as
[[math]]
\rho(X,Y) = \frac{{\rm cov}(X,Y)}{\sqrt{V(X)V(Y)}}\ .
[[/math]]
- Using Exercise(c), show that
[[math]] 0 \leq V\left( \frac X{\sigma(X)} + \frac Y{\sigma(Y)} \right) = 2(1 + \rho(X,Y))\ . [[/math]]
- Now show that
[[math]] 0 \leq V\left( \frac X{\sigma(X)} - \frac Y{\sigma(Y)} \right) = 2(1 - \rho(X,Y))\ . [[/math]]
- Using (a) and (b), show that
[[math]] -1 \leq \rho(X,Y) \leq 1\ . [[/math]]