Revision as of 08:45, 1 July 2024 by Admin (Created page with "'''Solution: B''' Let <math>C</math> = Event that a policyholder buys collision coverage <math>D</math> = Event that a policyholder buys disability coverage Then we are given that <math>\operatorname{P}[C] = 2\operatorname{P}[D]</math> and <math>\operatorname{P}[C ∩ D] = 0.15</math>. By the independence of <math>C</math> and <math>D</math>, it therefore follows that <math display = "block"> 0.15 = \operatorname{P}[C ∩ D] = \operatorname{P}[C] \operatorname{P}[D]...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


Jul 01'24

Answer

Solution: B

Let

[math]C[/math] = Event that a policyholder buys collision coverage

[math]D[/math] = Event that a policyholder buys disability coverage

Then we are given that [math]\operatorname{P}[C] = 2\operatorname{P}[D][/math] and [math]\operatorname{P}[C ∩ D] = 0.15[/math]. By the independence of [math]C[/math] and [math]D[/math], it therefore follows that

[[math]] 0.15 = \operatorname{P}[C ∩ D] = \operatorname{P}[C] \operatorname{P}[D] = 2\operatorname{P}[D] \operatorname{P}[D] = 2(\operatorname{P}[D])2 (\operatorname{P}[D])2 = 0.15/2 = 0.075 \operatorname{P}[D] = 0.075 [[/math]]

and [math]\operatorname{P}[C] = 2\operatorname{P}[D] = 2*0.075[/math]. Now the independence of C and D also implies the independence of [math]C^c[/math] and [math]D^c[/math] . As a result, we see that

[[math]] \operatorname{P}[C^c ∩ D^c] = \operatorname{P}[C^c] \operatorname{P}[D^c] = (1 – \operatorname{P}[C]) (1 – \operatorname{P}[D]) = (1 – 2 \sqrt{0.075} ) (1 – \sqrt{0.075} ) = 0.33 . [[/math]]

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00