Exercise
Jul 01'24
Answer
Solution: B
Let
[math]C[/math] = Event that a policyholder buys collision coverage
[math]D[/math] = Event that a policyholder buys disability coverage
Then we are given that [math]\operatorname{P}[C] = 2\operatorname{P}[D][/math] and [math]\operatorname{P}[C ∩ D] = 0.15[/math]. By the independence of [math]C[/math] and [math]D[/math], it therefore follows that
[[math]]
0.15 = \operatorname{P}[C ∩ D] = \operatorname{P}[C] \operatorname{P}[D] = 2\operatorname{P}[D] \operatorname{P}[D] = 2(\operatorname{P}[D])2
(\operatorname{P}[D])2 = 0.15/2 = 0.075
\operatorname{P}[D] = 0.075
[[/math]]
and [math]\operatorname{P}[C] = 2\operatorname{P}[D] = 2*0.075[/math]. Now the independence of C and D also implies the independence of [math]C^c[/math] and [math]D^c[/math] . As a result, we see that
[[math]]
\operatorname{P}[C^c ∩ D^c] = \operatorname{P}[C^c] \operatorname{P}[D^c] = (1 – \operatorname{P}[C]) (1 – \operatorname{P}[D])
= (1 – 2 \sqrt{0.075} ) (1 – \sqrt{0.075} ) = 0.33 .
[[/math]]