Revision as of 20:44, 30 April 2023 by Admin (Created page with "'''Solution: D''' <math display = "block"> \begin{align*} \operatorname{P}( \textrm{2 red and 2 blue transferred} | \textrm{blue drawn} ) = \frac{\operatorname{P}( \textrm{2...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


Apr 30'23

Answer

Solution: D

[[math]] \begin{align*} \operatorname{P}( \textrm{2 red and 2 blue transferred} | \textrm{blue drawn} ) = \frac{\operatorname{P}( \textrm{2 red and 2 blue transferred and blue drawn})}{\operatorname{P}(\textrm{blue drawn})} \\ \operatorname{P}( \textrm{2 red and 2 blue transferred and blue drawn}) = \frac{\binom{8}{2} \binom{6}{2}}{\binom{14}{4}} \times \frac{2}{4} = \frac{840}{4004} \\ \operatorname{P}( \textrm{blue drawn} ) = \frac{\binom{8}{0} \binom{6}{4}}{\binom{14}{4}} \times \frac{4}{4} + \frac{\binom{8}{1} \binom{6}{3}}{\binom{14}{4}} \times \frac{3}{4} + \frac{\binom{8}{2}\binom{6}{2}}{\binom{14}{4}} \times \frac{1}{4} = \frac{60 + 480 + 840 + 336}{4004} = \frac{1716}{4004} \\ \operatorname{P}(\textrm{2 red and blue transferred} | \textrm{blue drawn} ) = \frac{840}{1716} = 0.49. \end{align*} [[/math]]

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00