Exercise
Apr 30'23
Answer
Solution: D
[[math]]
\begin{align*}
\operatorname{P}( \textrm{2 red and 2 blue transferred} | \textrm{blue drawn} ) = \frac{\operatorname{P}( \textrm{2 red and 2 blue transferred and blue drawn})}{\operatorname{P}(\textrm{blue drawn})} \\
\operatorname{P}( \textrm{2 red and 2 blue transferred and blue drawn}) = \frac{\binom{8}{2} \binom{6}{2}}{\binom{14}{4}} \times \frac{2}{4} = \frac{840}{4004} \\
\operatorname{P}( \textrm{blue drawn} ) = \frac{\binom{8}{0} \binom{6}{4}}{\binom{14}{4}} \times \frac{4}{4} + \frac{\binom{8}{1} \binom{6}{3}}{\binom{14}{4}} \times \frac{3}{4} + \frac{\binom{8}{2}\binom{6}{2}}{\binom{14}{4}} \times \frac{1}{4} = \frac{60 + 480 + 840 + 336}{4004} = \frac{1716}{4004} \\
\operatorname{P}(\textrm{2 red and blue transferred} | \textrm{blue drawn} ) = \frac{840}{1716} = 0.49.
\end{align*}
[[/math]]