Revision as of 10:03, 1 May 2023 by Admin (Created page with "'''Solution: B''' To determine <math>k</math>, note that <math display = "block"> 1 = \int_0^1 k(1-y)^4 dy = -\frac{k}{5}(1-y)^{5} \Big | _0 ^1 = \frac{k}{5}. </math> Hence...")
Exercise
May 01'23
Answer
Solution: B
To determine [math]k[/math], note that
[[math]]
1 = \int_0^1 k(1-y)^4 dy = -\frac{k}{5}(1-y)^{5} \Big | _0 ^1 = \frac{k}{5}.
[[/math]]
Hence [math] k = 5 [/math]. We need to find
[[math]]
\begin{align*}
\operatorname{P}[V \gt 10,000] &= \operatorname{P}[100,000 Y \gt 10,000] = \operatorname{P}[Y \gt 0.1] \\
&= \int_{0.1}^1 5(1-y)^4 dy = -(1-y)^5 \Big |_{0.1}^1 \\ &= (0.9)^5 \\ &= 0.59
\end{align*}
[[/math]]
and
[[math]]
\begin{align*}
\operatorname{P}[V \gt 40,000] = \operatorname{P}[100,000 Y \gt 40,000] = \operatorname{P}[Y \gt 0.4] &= \int_{0.4}^1 5(1-y)^4 dy \\
&= -(1-y)^5 \Big |_{0.4}^1 \\
&= (0.6)^5 \\
&= 0.078.
\end{align*}
[[/math]]
It now follows that
[[math]]
\begin{align*}
\operatorname{P}[V \gt 40,000 | V \gt 10,000] &= \frac{\operatorname{P}[V \gt 40, 000 ∩ V \gt 10, 000]}{\operatorname{P}[V \gt 10, 000]} \\
&= \frac{\operatorname{P}[V \gt 40, 000]}{\operatorname{P}[V \gt 10, 000]} \\
&= \frac{0.078}{0.59}\\
&= 0.132.
\end{align*}
[[/math]]