Revision as of 21:32, 3 May 2023 by Admin (Created page with "'''Solution: C''' Let <math>N</math> be the number of major snowstorms per year, and let <math>P</math> be the amount paid to to the company under the policy. Then <math di...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


ABy Admin
May 03'23

Answer

Solution: C

Let [math]N[/math] be the number of major snowstorms per year, and let [math]P[/math] be the amount paid to to the company under the policy. Then

[[math]] \operatorname{P}[N = n] = \frac{(3/2)^ne^{-3/2}}{n!}, n = 0, 1, 2, \ldots [[/math]]

and

[[math]] P = \begin{cases} 0, \quad N =0 \\ 10000(N-1), \quad N \geq 1 \end{cases} [[/math]]

Now observe that

[[math]] \begin{align*} \operatorname{E}[P] &= \sum_{n=1}^{\infty} 10000(n-1) \frac{(3/2)^ne^{-3/2}}{n!} \\ &= 10000 e^{-3/2} + \sum_{n=0}^{\infty} 10000(n-1) \frac{(3/2)^{n}e^{-3/2}}{n!} \\ &= 10000 e^{-3/2} + \operatorname{E}[10000(N-1)] \\ &= 10000 e^{-3/2} + \operatorname{E}[10000N] - \operatorname{E}[10000] \\ & = 10000e^{-3/2} + 10000 (3/2) - 10000 \\ &= 7231. \end{align*} [[/math]]

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00