Exercise
ABy Admin
May 03'23
Answer
Solution: C
Let [math]N[/math] be the number of major snowstorms per year, and let [math]P[/math] be the amount paid to to the company under the policy. Then
[[math]]
\operatorname{P}[N = n] = \frac{(3/2)^ne^{-3/2}}{n!}, n = 0, 1, 2, \ldots
[[/math]]
and
[[math]]
P = \begin{cases}
0, \quad N =0 \\
10000(N-1), \quad N \geq 1
\end{cases}
[[/math]]
Now observe that
[[math]]
\begin{align*}
\operatorname{E}[P] &= \sum_{n=1}^{\infty} 10000(n-1) \frac{(3/2)^ne^{-3/2}}{n!} \\
&= 10000 e^{-3/2} + \sum_{n=0}^{\infty} 10000(n-1) \frac{(3/2)^{n}e^{-3/2}}{n!} \\
&= 10000 e^{-3/2} + \operatorname{E}[10000(N-1)] \\
&= 10000 e^{-3/2} + \operatorname{E}[10000N] - \operatorname{E}[10000] \\
& = 10000e^{-3/2} + 10000 (3/2) - 10000 \\
&= 7231.
\end{align*}
[[/math]]