Revision as of 21:37, 3 May 2023 by Admin (Created page with "'''Solution: B''' The amount of money the insurance company will have to pay is defined by the random variable <math display = "block"> Y = \begin{cases} 1000x, \quad x <...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


ABy Admin
May 03'23

Answer

Solution: B

The amount of money the insurance company will have to pay is defined by the random variable

[[math]] Y = \begin{cases} 1000x, \quad x \lt 2 \\ 2000, \quad x \geq 2 \end{cases} [[/math]]

where x is a Poisson random variable with mean 0.6 . The probability function for X is

[[math]] p(x) = \frac{e^{-0.6}(0.6)^k}{k!} \quad k = 0,1,2,3,\ldots [[/math]]

and

[[math]] \begin{align*} \operatorname{E}[Y] &= 0 + 1000 (0.6)e^{-0.6} + 2000 e^{-0.6} \sum_{k=2}^{\infty} \frac{0.6^k}{k!} \\ &= 1000 (0.6) e^{-0.6} + 2000 \left( e^{-0.6} \sum_{k=0}^{\infty} \frac{0.6^k}{k!} - e^{-0.6} - (0.6)e^{-0.6}\right) \\ &= 2000 e^{-0.6} \sum_{k=0}^{\infty} \frac{0.6}{k!} - 2000e^{-0.6} - 1000(0.6)e^{-0.6}\\ &= 2000 - 2000e^{-0.6} - 600e^{-0.6} \\ &= 573 \end{align*} [[/math]]

[[math]] \begin{align*} \operatorname{E}[Y^2] &= 1000^2 (0.6)e^{-0.6} + (2000)^2 e^{-0.6} \sum_{k=2}^{\infty} \frac{0.6^k}{k!} \\ &= (2000)^2 e^{-0.6} \sum_{k=0}^{\infty} \frac{0.6^k}{k!} - (2000)^2e^{-0.6} - \left[ (2000)^2 - (1000)^2\right](0.6)e^{-0.6} \\ &= (2000)^2 - (2000)^2e^{-0.6}-[(2000)^2 - (1000)^2](0.6)e^{-0.6} \\ &= 816,893 \end{align*} [[/math]]

[[math]] \operatorname{Var}[Y] = \operatorname{E}[Y^2 ] − { \operatorname{E}[Y ]} = 816,893 − ( 573) = 488,564, \, \sqrt{\operatorname{Var}[Y]} = 699. [[/math]]

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00