Exercise
ABy Admin
May 03'23
Answer
Solution: B
The amount of money the insurance company will have to pay is defined by the random variable
[[math]]
Y = \begin{cases}
1000x, \quad x \lt 2 \\
2000, \quad x \geq 2
\end{cases}
[[/math]]
where x is a Poisson random variable with mean 0.6 . The probability function for X is
[[math]]
p(x) = \frac{e^{-0.6}(0.6)^k}{k!} \quad k = 0,1,2,3,\ldots
[[/math]]
and
[[math]]
\begin{align*}
\operatorname{E}[Y] &= 0 + 1000 (0.6)e^{-0.6} + 2000 e^{-0.6} \sum_{k=2}^{\infty} \frac{0.6^k}{k!} \\
&= 1000 (0.6) e^{-0.6} + 2000 \left( e^{-0.6} \sum_{k=0}^{\infty} \frac{0.6^k}{k!} - e^{-0.6} - (0.6)e^{-0.6}\right) \\
&= 2000 e^{-0.6} \sum_{k=0}^{\infty} \frac{0.6}{k!} - 2000e^{-0.6} - 1000(0.6)e^{-0.6}\\
&= 2000 - 2000e^{-0.6} - 600e^{-0.6} \\
&= 573
\end{align*}
[[/math]]
[[math]]
\begin{align*}
\operatorname{E}[Y^2] &= 1000^2 (0.6)e^{-0.6} + (2000)^2 e^{-0.6} \sum_{k=2}^{\infty} \frac{0.6^k}{k!} \\
&= (2000)^2 e^{-0.6} \sum_{k=0}^{\infty} \frac{0.6^k}{k!} - (2000)^2e^{-0.6} - \left[ (2000)^2 - (1000)^2\right](0.6)e^{-0.6} \\
&= (2000)^2 - (2000)^2e^{-0.6}-[(2000)^2 - (1000)^2](0.6)e^{-0.6} \\
&= 816,893
\end{align*}
[[/math]]
[[math]]
\operatorname{Var}[Y] = \operatorname{E}[Y^2 ] − { \operatorname{E}[Y ]} = 816,893 − ( 573) = 488,564, \, \sqrt{\operatorname{Var}[Y]} = 699.
[[/math]]