Revision as of 14:13, 6 May 2023 by Admin (Created page with "'''Solution: D''' X follows an exponential distribution with mean <math>20 \sqrt{5}</math> and variance <math>(20 \sqrt{5})^2 = 2000.</math> Then, <math display = "block">...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


ABy Admin
May 06'23

Answer

Solution: D

X follows an exponential distribution with mean [math]20 \sqrt{5}[/math] and variance [math](20 \sqrt{5})^2 = 2000.[/math] Then,

[[math]] \operatorname{Cov} [ X , Y ] = \operatorname{Var} [ X ] = \operatorname{Var} [Y ] \operatorname{Corr} [ X , Y ] = \sqrt{2000} \sqrt{12500} ( 0.2 ) = 1000 . [[/math]]

It follows that

[[math]] \operatorname{Var} [ X + Y ]= \operatorname{Var} [ X ] + \operatorname{Var} [Y ] + 2\operatorname{Cov} [ X , Y ]= 2000 + 12,500 + 2 (1000 )= 16,500 . [[/math]]

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00