Revision as of 09:03, 7 May 2023 by Admin (Created page with "'''Solution: D''' We want to find <math>x</math> such that <math display = "block"> \begin{align*} 1000 = \operatorname{E}[P] &= \int_0^1 \frac{x}{10} e^{-t/10} dt + \int_1^...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


ABy Admin
May 07'23

Answer

Solution: D

We want to find [math]x[/math] such that

[[math]] \begin{align*} 1000 = \operatorname{E}[P] &= \int_0^1 \frac{x}{10} e^{-t/10} dt + \int_1^3 \frac{x}{2} \frac{1}{10} e^{-t/10} dt \\ &= 1000 \int_0^1 x(0.1)e^{-t/10} dt + \int_1^30.5x(0.1)e^{-t/10} dt \\ &= -xe^{-t/10} \Big |_0^1 - 0.5xe^{-t/10} \Big |_1^3 \\ &= -xe^{-1/10} + x - 0.5xe^{-3/10} + 0.5xe^{-1/10} + 0.5x^{-1/10} \\ &= 0.1722x. \end{align*} [[/math]]

Thus [math]x = 5644 [/math].

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00