Exercise
ABy Admin
May 07'23
Answer
Solution: D
We want to find [math]x[/math] such that
[[math]]
\begin{align*}
1000 = \operatorname{E}[P] &= \int_0^1 \frac{x}{10} e^{-t/10} dt + \int_1^3 \frac{x}{2} \frac{1}{10} e^{-t/10} dt \\
&= 1000 \int_0^1 x(0.1)e^{-t/10} dt + \int_1^30.5x(0.1)e^{-t/10} dt \\
&= -xe^{-t/10} \Big |_0^1 - 0.5xe^{-t/10} \Big |_1^3 \\
&= -xe^{-1/10} + x - 0.5xe^{-3/10} + 0.5xe^{-1/10} + 0.5x^{-1/10} \\
&= 0.1722x.
\end{align*}
[[/math]]
Thus [math]x = 5644 [/math].