Revision as of 15:30, 7 May 2023 by Admin (Created page with "'''Solution: B''' Let *<math>u</math> be the annual claims *<math>v</math> be the annual premiums *<math>f(x)</math> be the density function of <math>X</math> *<math>F(x)</...")
Exercise
ABy Admin
May 07'23
Answer
Solution: B
Let
- [math]u[/math] be the annual claims
- [math]v[/math] be the annual premiums
- [math]f(x)[/math] be the density function of [math]X[/math]
- [math]F(x)[/math] be the distribution function of [math]X[/math]
Then since [math]U[/math] and [math]V[/math] are independent
[[math]]
g(u,v) = (e^{-u})(\frac{1}{2}e^{-v/2}) = \frac{1}{2}e^{-u}e^{-v/2}, \, 0 \lt u \lt \infty, \, 0 \lt v \lt \infty
[[/math]]
and
[[math]]
\begin{align*}
F(x) = P[X \leq x] = P[ \frac{u}{v} \leq x ] &= P[ U \leq Vx] \\
&= \int_0^{\infty}\int_0^{vx} g(u,v) du dv = \int_0^{\infty}\int_0^{vx} \frac{1}{2} e^{-u}e^{-v/2} du dv \\
&= \int_0^{\infty} -\frac{1}{2} e^{-u}e^{-v/2} \Big |_0^{vx} dv = \int_0^{\infty} \left( -\frac{1}{2} e^{-vx} e^{-v/2} + \frac{1}{2} e^{-v/2}\right) dv \\
&= \int_0^{\infty} \left( -\frac{1}{2} e^{-v(x+1/2)} + \frac{1}{2} e^{-v/2} \right )dv \\
&= \left [ \frac{1}{2x+1} e^{-v(x + 1/2)} - e^{-v/2} \right ]_0^{\infty} \\
&= -\frac{1}{2x+1} + 1
\end{align*}
[[/math]]
Finally ,
[[math]]
f(x) = F^{'}(x) = \frac{2}{(2x+1)^2}.
[[/math]]