Exercise


ABy Admin
May 07'23

Answer

Solution: B

Let

  • [math]u[/math] be the annual claims
  • [math]v[/math] be the annual premiums
  • [math]f(x)[/math] be the density function of [math]X[/math]
  • [math]F(x)[/math] be the distribution function of [math]X[/math]

Then since [math]U[/math] and [math]V[/math] are independent

[[math]] g(u,v) = (e^{-u})(\frac{1}{2}e^{-v/2}) = \frac{1}{2}e^{-u}e^{-v/2}, \, 0 \lt u \lt \infty, \, 0 \lt v \lt \infty [[/math]]

and

[[math]] \begin{align*} F(x) = P[X \leq x] = P[ \frac{u}{v} \leq x ] &= P[ U \leq Vx] \\ &= \int_0^{\infty}\int_0^{vx} g(u,v) du dv = \int_0^{\infty}\int_0^{vx} \frac{1}{2} e^{-u}e^{-v/2} du dv \\ &= \int_0^{\infty} -\frac{1}{2} e^{-u}e^{-v/2} \Big |_0^{vx} dv = \int_0^{\infty} \left( -\frac{1}{2} e^{-vx} e^{-v/2} + \frac{1}{2} e^{-v/2}\right) dv \\ &= \int_0^{\infty} \left( -\frac{1}{2} e^{-v(x+1/2)} + \frac{1}{2} e^{-v/2} \right )dv \\ &= \left [ \frac{1}{2x+1} e^{-v(x + 1/2)} - e^{-v/2} \right ]_0^{\infty} \\ &= -\frac{1}{2x+1} + 1 \end{align*} [[/math]]

Finally ,

[[math]] f(x) = F^{'}(x) = \frac{2}{(2x+1)^2}. [[/math]]

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00