Revision as of 19:21, 7 May 2023 by Admin (Created page with "'''Solution: A''' We are given that <math>X</math> denotes loss. In addition, denote the time required to process a claim by T. Then the joint pdf of <math>X</math> and <mat...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


May 07'23

Answer

Solution: A

We are given that [math]X[/math] denotes loss. In addition, denote the time required to process a claim by T.

Then the joint pdf of [math]X[/math] and [math]T[/math] is

[[math]] f(x,t) = \begin{cases} \frac{3}{x}x^2 \frac{1}{x} = \frac{3}{8}x, \, x \lt t \lt 2x, 0 \leq x \leq 2 \\ 0, \, \textrm{otherwise} \end{cases} [[/math]]

Now we can find

[[math]] \begin{align*} P[T \geq 3] = \int_2^4 \int_{t/2}^2 \frac{3}{8} x dx dt = \int_3^4 \left[ \frac{3}{16}x^2\right]_{t/2}^2 dt &= \int_3^4 \left( \frac{12}{16} - \frac{3}{64}t^2\right) dt\\ &= \left [ \frac{12}{16} - \frac{1}{64}t^3\right ]_3^4 \\ &= \frac{12}{4} - 1 - \left( \frac{36}{16} - \frac{27}{64}\right) \\ &= \frac{11}{64} = 0.17 \end{align*} [[/math]]

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00