Revision as of 09:55, 8 May 2023 by Admin (Created page with "'''Solution: C''' Let S represent the event that the selected borrower defaulted on at least one student loan. Let C represent the event that the selected borrower defaulted...")
Exercise
ABy Admin
May 08'23
Answer
Solution: C
Let S represent the event that the selected borrower defaulted on at least one student loan.
Let C represent the event that the selected borrower defaulted on at least one car loan.
We need to find [math] \operatorname{P}(C | S) = \frac{\operatorname{P}(C \cap S)}{\operatorname{P}(S)}[/math].
We are given
[[math]]
\operatorname{P}(S) = 0.3, \, \operatorname{P}(S | C) = \frac{\operatorname{P}(C \cap S)}{\operatorname{P}(C)} = 0.4, \, \operatorname{P}(C | S^c) = \frac{\operatorname{P}(C \cap S^c)}{\operatorname{P}(S^c)} = 0.28.
[[/math]]
Then
[[math]]
\operatorname{P}(C \cap S^c) = 0.28 \operatorname{P}(S^c) = 0.28(1-0.3) = 0.196.
[[/math]]
Because [math] \operatorname{P}(C) = \operatorname{P}(C \cap S) + \operatorname{P}(C \cap S^c)[/math] and [math]\operatorname{P}(C) = \operatorname{P}(C \cap S)/0.4 [/math], we have
[[math]]
\operatorname{P}(C ∩ S ) / 0.4= \operatorname{P}(C ∩ S ) + 0.196 ⇒ \operatorname{P}(C ∩ S )= 0.196 /1.5= 0.13067.
[[/math]]
Therefore
[[math]]
\operatorname{P}(C | S) = \frac{\operatorname{P}(C \cap S)}{\operatorname{P}(S)} = \frac{0.13067}{0.3} = 0.4356.
[[/math]]