Exercise


ABy Admin
May 08'23

Answer

Solution: C

Let S represent the event that the selected borrower defaulted on at least one student loan.

Let C represent the event that the selected borrower defaulted on at least one car loan.

We need to find [math] \operatorname{P}(C | S) = \frac{\operatorname{P}(C \cap S)}{\operatorname{P}(S)}[/math].

We are given

[[math]] \operatorname{P}(S) = 0.3, \, \operatorname{P}(S | C) = \frac{\operatorname{P}(C \cap S)}{\operatorname{P}(C)} = 0.4, \, \operatorname{P}(C | S^c) = \frac{\operatorname{P}(C \cap S^c)}{\operatorname{P}(S^c)} = 0.28. [[/math]]

Then

[[math]] \operatorname{P}(C \cap S^c) = 0.28 \operatorname{P}(S^c) = 0.28(1-0.3) = 0.196. [[/math]]

Because [math] \operatorname{P}(C) = \operatorname{P}(C \cap S) + \operatorname{P}(C \cap S^c)[/math] and [math]\operatorname{P}(C) = \operatorname{P}(C \cap S)/0.4 [/math], we have

[[math]] \operatorname{P}(C ∩ S ) / 0.4= \operatorname{P}(C ∩ S ) + 0.196 ⇒ \operatorname{P}(C ∩ S )= 0.196 /1.5= 0.13067. [[/math]]

Therefore

[[math]] \operatorname{P}(C | S) = \frac{\operatorname{P}(C \cap S)}{\operatorname{P}(S)} = \frac{0.13067}{0.3} = 0.4356. [[/math]]

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00