Revision as of 14:48, 9 May 2023 by Admin (Created page with "'''Solution: D''' Let <math>X_1</math> and <math>X_2</math> denote the measurement errors of the less and more accurate instruments, respectively. If <math>N(\mu, \sigma ) </...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


ABy Admin
May 09'23

Answer

Solution: D

Let [math]X_1[/math] and [math]X_2[/math] denote the measurement errors of the less and more accurate instruments, respectively. If [math]N(\mu, \sigma ) [/math] denotes a normal random variable with mean [math]\mu [/math] and standard deviation [math]\sigma [/math], then we are given [math]X_1[/math] is [math]N(0, 0.0056h)[/math] and [math]X_1,X_2[/math] are independent. It follows that

[[math]]Y = \frac{X_1 + X_2}{2} [[/math]]

is

[[math]] N(0, \sqrt{\frac{0.0056^2h^2 + 0.0044^2h^2}{4}}) = N(0, 0.00356h ). [[/math]]

Therefore,

[[math]] \begin{align*} \operatorname{P}[-0.005h \leq Y \leq 0.005h] &= \operatorname{P}[Y \leq 0.005h] - \operatorname{P}[Y \leq -0.005h] \\ &= \operatorname{P}[Y \leq 0.005h] - \operatorname{P}[Y \geq 0.005h] \\ &= 2\operatorname{P}[Y \leq 0.005h] - 1 \\ &= 2\operatorname{P}[Z \leq \frac{0.005h}{0.00356h}] - 1\\ &= 2\operatorname{P}[Z \leq 1.4] -1 \\ & = 2(0.9192) - 1\\ &= 0.84. \end{align*} [[/math]]

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00