Exercise
ABy Admin
May 09'23
Answer
Solution: D
Let [math]X_1[/math] and [math]X_2[/math] denote the measurement errors of the less and more accurate instruments, respectively. If [math]N(\mu, \sigma ) [/math] denotes a normal random variable with mean [math]\mu [/math] and standard deviation [math]\sigma [/math], then we are given [math]X_1[/math] is [math]N(0, 0.0056h)[/math] and [math]X_1,X_2[/math] are independent. It follows that
[[math]]Y = \frac{X_1 + X_2}{2} [[/math]]
is
[[math]]
N(0, \sqrt{\frac{0.0056^2h^2 + 0.0044^2h^2}{4}}) = N(0, 0.00356h ).
[[/math]]
Therefore,
[[math]]
\begin{align*}
\operatorname{P}[-0.005h \leq Y \leq 0.005h] &= \operatorname{P}[Y \leq 0.005h] - \operatorname{P}[Y \leq -0.005h] \\
&= \operatorname{P}[Y \leq 0.005h] - \operatorname{P}[Y \geq 0.005h] \\
&= 2\operatorname{P}[Y \leq 0.005h] - 1 \\
&= 2\operatorname{P}[Z \leq \frac{0.005h}{0.00356h}] - 1\\
&= 2\operatorname{P}[Z \leq 1.4] -1 \\ &
= 2(0.9192) - 1\\
&= 0.84.
\end{align*}
[[/math]]