Revision as of 18:05, 13 May 2023 by Admin (Created page with "'''Key: C''' <math display="inline">\mathrm{LER}=\frac{\operatorname{E}(X \wedge d)}{\operatorname{E}(X)}=\frac{\theta\left(1-e^{-d / \theta}\right)}{\theta}=1-e^{-d / \theta...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


May 13'23

Answer

Key: C

[math]\mathrm{LER}=\frac{\operatorname{E}(X \wedge d)}{\operatorname{E}(X)}=\frac{\theta\left(1-e^{-d / \theta}\right)}{\theta}=1-e^{-d / \theta}[/math]

Last year: [math]\quad 0.70=1-e^{-d / \theta} \Rightarrow-d=\theta \log (0.30)[/math]

Next year: [math]\quad-d_{\text {new }}=\theta \log \left(1-\mathrm{LER}_{\text {new }}\right)[/math]

Hence [math]\theta \log \left(1-\mathrm{LER}_{\text {new }}\right)=-d_{\text {new }}=\frac{4}{3} \theta \log (0.30)[/math]

[math]\log \left(1-\mathrm{LER}_{\text {new }}\right)=-1.6053[/math]

[math]\left(1-\mathrm{LER}_{\text {new }}\right)=e^{-1.6053}=0.20[/math]

[math]\mathrm{LER}_{\text {new }}=0.80[/math]

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00