Revision as of 09:14, 14 May 2023 by Admin (Created page with "'''Key: C''' Let <math>X</math> be the loss random variable. Then, <math>( X − 5)_+</math> is the claim random variable. <math display = "block"> \begin{aligned} &\operato...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


ABy Admin
May 14'23

Answer

Key: C

Let [math]X[/math] be the loss random variable. Then, [math]( X − 5)_+[/math] is the claim random variable.

[[math]] \begin{aligned} &\operatorname{E}(X) = \frac{10}{2.5-1} = 6.667 \\ &\operatorname{E}(X \wedge 5) = \left( \frac{10}{2.5 -1}\right) \left [ 1-(\frac{10}{5+10})^{2.5-1}\right] = 3.038 \\ &\operatorname{E}[( X − 5)_+ ] = \operatorname{E}[ X ) − \operatorname{E}[ X \wedge 5) = 6.667 − 3.038 = 3.629 \end{aligned} [[/math]]

Expected aggregate claims =

[[math]]\operatorname{E}( N ) \operatorname{E}[( X − 5) + ] = 5(3.629) = 18.15.[[/math]]

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00