Revision as of 09:14, 14 May 2023 by Admin (Created page with "'''Key: C''' Let <math>X</math> be the loss random variable. Then, <math>( X − 5)_+</math> is the claim random variable. <math display = "block"> \begin{aligned} &\operato...")
Exercise
ABy Admin
May 14'23
Answer
Key: C
Let [math]X[/math] be the loss random variable. Then, [math]( X − 5)_+[/math] is the claim random variable.
[[math]]
\begin{aligned}
&\operatorname{E}(X) = \frac{10}{2.5-1} = 6.667 \\
&\operatorname{E}(X \wedge 5) = \left( \frac{10}{2.5 -1}\right) \left [ 1-(\frac{10}{5+10})^{2.5-1}\right] = 3.038 \\
&\operatorname{E}[( X − 5)_+ ] = \operatorname{E}[ X ) − \operatorname{E}[ X \wedge 5) = 6.667 − 3.038 = 3.629
\end{aligned}
[[/math]]
Expected aggregate claims =
[[math]]\operatorname{E}( N ) \operatorname{E}[( X − 5) + ] = 5(3.629) = 18.15.[[/math]]