Revision as of 22:56, 17 November 2023 by Admin (Created page with "'''Solution: E''' The accumulated values for Funds <math>X</math> and <math>Y</math> are <math>1000\left(1+\frac{k}{2}\right)^{10}</math> and <math>921.90\left(1-\frac{k}{2}\right)^{-10}</math> respectively. Equating them and solving for <math>k</math> : <math display = "block"> \begin{aligned} & 1000\left(1+\frac{k}{2}\right)^{10}=921.90\left(1-\frac{k}{2}\right)^{-10} \\ & 0.9219=\left[\left(1+\frac{k}{2}\right)\left(1-\frac{k}{2}\right)\right]^{10}=\left(1-\frac{k^2...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


ABy Admin
Nov 17'23

Answer

Solution: E

The accumulated values for Funds [math]X[/math] and [math]Y[/math] are [math]1000\left(1+\frac{k}{2}\right)^{10}[/math] and [math]921.90\left(1-\frac{k}{2}\right)^{-10}[/math] respectively. Equating them and solving for [math]k[/math] :

[[math]] \begin{aligned} & 1000\left(1+\frac{k}{2}\right)^{10}=921.90\left(1-\frac{k}{2}\right)^{-10} \\ & 0.9219=\left[\left(1+\frac{k}{2}\right)\left(1-\frac{k}{2}\right)\right]^{10}=\left(1-\frac{k^2}{4}\right)^{10} \\ & 1-\frac{k^2}{4}=0.9919 \\ & k^2=0.0324 \\ & k=0.18 \end{aligned} [[/math]]

Copyright 2023 . The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00