Revision as of 23:09, 17 November 2023 by Admin (Created page with "'''Solution: B''' <math display = "block"> \begin{aligned} & e^{\int_0^{20} \frac{2}{1+2 t} d t}=e^{\left.\ln (1+2 t)\right|_0 ^{20}}=41 \\ & 41=(1+i)^{20} \\ & i=0.204035 \\ & (1+0.204035)^5=2.53\end{aligned} </math> {{soacopyright | 2023 }}")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


ABy Admin
Nov 17'23

Answer

Solution: B

[[math]] \begin{aligned} & e^{\int_0^{20} \frac{2}{1+2 t} d t}=e^{\left.\ln (1+2 t)\right|_0 ^{20}}=41 \\ & 41=(1+i)^{20} \\ & i=0.204035 \\ & (1+0.204035)^5=2.53\end{aligned} [[/math]]

Copyright 2023 . The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00