Revision as of 09:01, 18 November 2023 by Admin (Created page with "'''Solution: D''' For the first perpetuity, <math display = "block"> \begin{align*} \frac{1}{\left(1+\dot{l}\right)^{2}-1}+1 &= 7.21 \\ \frac{1}{6.21} &= \left(1+i\right)^{2}-1 \\ i &= 0.0775 \end{align*} </math> For the second perpetuity, <math display = "block"> \begin{align*} R\left[\frac{1}{\left(1.0775+0.01\right)^{3}-1}+1\right]\left(1.0875\right)^{-1}=7.21 \\ 1.286139 R = 7.21(1.0875) 0.286139\\ R=1.74 \end{align*} </math> {{soacopyright | 2023 }}")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


ABy Admin
Nov 18'23

Answer

Solution: D

For the first perpetuity,

[[math]] \begin{align*} \frac{1}{\left(1+\dot{l}\right)^{2}-1}+1 &= 7.21 \\ \frac{1}{6.21} &= \left(1+i\right)^{2}-1 \\ i &= 0.0775 \end{align*} [[/math]]

For the second perpetuity,

[[math]] \begin{align*} R\left[\frac{1}{\left(1.0775+0.01\right)^{3}-1}+1\right]\left(1.0875\right)^{-1}=7.21 \\ 1.286139 R = 7.21(1.0875) 0.286139\\ R=1.74 \end{align*} [[/math]]

Copyright 2023 . The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00