Revision as of 10:51, 18 November 2023 by Admin (Created page with "'''Solution: B''' The present value is <math display = "block"> \begin{align*} v^3 + v^{10} + v^{17} + \cdots + v^{-4+7n}\\ = \frac{v^{3}-v^{3+7n}}{1-v^{7}}=\frac{\left(1-v^{3+7n}\right)-\left(1-v^{3}\right)}{1-v}=\frac{a_{\overline{3+7n}|}-a_{\overline{{{3}}}|}}{a_{\overline{{{7}}}|}}. \end{align*} </math> {{soacopyright | 2023 }}")
Exercise
ABy Admin
Nov 18'23
Answer
Solution: B
The present value is
[[math]]
\begin{align*}
v^3 + v^{10} + v^{17} + \cdots + v^{-4+7n}\\
= \frac{v^{3}-v^{3+7n}}{1-v^{7}}=\frac{\left(1-v^{3+7n}\right)-\left(1-v^{3}\right)}{1-v}=\frac{a_{\overline{3+7n}|}-a_{\overline{{{3}}}|}}{a_{\overline{{{7}}}|}}.
\end{align*}
[[/math]]