Revision as of 23:24, 18 November 2023 by Admin (Created page with "'''Solution: C''' <math display = "block"> \begin{array}{l}{{50,000\bigg[\frac{(1+i)^{30}-(1.03)^{30}}{(1+i)^{30}(i-0.03)}\bigg](1+i)=5,000\bigg[\frac{{(1+i)}^{30}-{(1.03)}^{30}}{i-0.03}\bigg]}}\\ {{50,000/(1+i)^{29}=5,000}} \\ {{(1+i)^{29} = 10}} \\i = 10^{1/29} -1 = 0.082637 \end{array} </math> The accumulated amount is <math display = "block"> 50.000\bigg[\frac{(1.082637)^{30}-(1.03)^{30}}{(1.082637)^{30}(0.082637-0.03)}\bigg](1.082637)=797.836.82 </math> {{soac...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


ABy Admin
Nov 18'23

Answer

Solution: C

[[math]] \begin{array}{l}{{50,000\bigg[\frac{(1+i)^{30}-(1.03)^{30}}{(1+i)^{30}(i-0.03)}\bigg](1+i)=5,000\bigg[\frac{{(1+i)}^{30}-{(1.03)}^{30}}{i-0.03}\bigg]}}\\ {{50,000/(1+i)^{29}=5,000}} \\ {{(1+i)^{29} = 10}} \\i = 10^{1/29} -1 = 0.082637 \end{array} [[/math]]

The accumulated amount is

[[math]] 50.000\bigg[\frac{(1.082637)^{30}-(1.03)^{30}}{(1.082637)^{30}(0.082637-0.03)}\bigg](1.082637)=797.836.82 [[/math]]

Copyright 2023 . The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00