Revision as of 19:24, 19 November 2023 by Admin (Created page with "'''Solution: B''' Let X be the price of Bond X. Then, for the two bonds: <math display = "block"> \begin{array}{l}{{X=10,000(0.03)a_{\overline{{{2n}}}|0.035}+c(1.035)^{-2n}}}\\ {{X-969.52=10,000(0.025)a_{\overline{{{2n}}}|0.035}+(c+50)(1.035)^{-2n}}}\end{array} </math> Subtracting the second equation from the first gives <math display = "block"> \begin{array}{l}{{969.52=50a_{\overline{{{2n}}}|0.035}-50(1.035)^{-2n}}}\\ {{969.52=\frac{50}{0.035}[1-(1.035)^{-2n}]-50(1...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


ABy Admin
Nov 19'23

Answer

Solution: B

Let X be the price of Bond X. Then, for the two bonds:

[[math]] \begin{array}{l}{{X=10,000(0.03)a_{\overline{{{2n}}}|0.035}+c(1.035)^{-2n}}}\\ {{X-969.52=10,000(0.025)a_{\overline{{{2n}}}|0.035}+(c+50)(1.035)^{-2n}}}\end{array} [[/math]]

Subtracting the second equation from the first gives

[[math]] \begin{array}{l}{{969.52=50a_{\overline{{{2n}}}|0.035}-50(1.035)^{-2n}}}\\ {{969.52=\frac{50}{0.035}[1-(1.035)^{-2n}]-50(1.035)^{-2n}}}\\ {{1.035^{-2n}=459.05/1478.57=0.310469}}\\ {{m=-(0.5)\ln(0.310469)/\vert\ln(1.035)=17.}} \end{array} [[/math]]

Copyright 2023 . The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00